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C O N D I T I O N S  F O R  F O R M I N G  T H E R M A L  S T R U C T U R E S  

I N  A M E T A L L I C  C O N D U C T O R  H E A T E D  B Y  A N  

E L E C T R I C  C U R R E N T  

V. I. Ikryannikov UDC 537.311.33 

A nonl inear  metal l ic  conductor  with a temperature-dependent  electric conduct iv i ty  contains  an 

inhomogeneity. Under certain conditions, under the action of Joule heat release in this medium a structure 

is formed as the inhomogeneity intergrows across the current lines. 

The present work is an extension of studies [1, 2 ] that were carded  out to investigate the interaction of 

thermal and electric fields in a heterogeneous nonlinear metallic conductor heated by an electric current  that passes 

through it. Its main goal is to determine the most general conditions under  which structures are formed in this 

system. 

First, we recall the main results obtained earlier. The heating of an infinite metallic conductor with an 

inhomogeneity at the center  described by the function Q (r, z) by an electric current with the density ./0 (t) at infinity 

is studied. The  current  is directed along the z axis of the cylindrical coordinate system (r, z). The  effect of the 

change in the current  with time on the thermal processes in the vicinity of the inhomogeneity is analyzed in [2 ]. 

Therefore,  for simplicity it will be assumed in what follows that jo(t) = ]0 -- const. The  equations describing the 

changes in the temperature  T and the electric potential (I) in a conductor with the electric conductivity a = [1 + 

aQ(r, z) ]-1T-1 have the form V2(I) = - V ( P . V a / a ,  OT/Ot = V?T + 60aVqb.V(I) , where the coordinates r and z are 

written in units of the characteristic dimension of the inhomogeneity R and the time t and the potential (I) are 

expressed in units of R2/Z and R2]O /ao, respectively; T = 1 + a(Ta - TO); a is the electric conductivity of the 

medium referred to the initial electric conductivity a 0 at infinity; a -- (1/a - 1) at t = 0, r = z = 0 is the parameter  

of the inhomogeneity;  6 o = R2aj~/(ZCTaO). Let T = exp(60t) [1 + aT 1 + O(a a) ], ~ = exp(60t) [ - z  + aaP I + O(a 2) ]. 

Then  

OT1 O~ 
V2 t~l = Oz Oz ' 

Ot r l  - 6o 2 ~ - z  + 2T~ + f~ , r~lt=o = 0.  (1) 

In [1, 2 ] problem (1) was studied when the inhomogeneity had the specific spherically symmetric shape Q(r,  z) = 

e x p ( - r  2 - z2). In this case the time dependence of the temperature at the center is 

E ] T 1 ( 0 ,  0 ,  t) =-~  f dz 1 - ( 1  + 2 6 0 z ' ) F (  2 v r 2 ~ 0  T) 
o T (1 + 4Q 3'2 ~/2 60 ~: ' 

X 

where F(x) = e x p ( - x a ) f  exp y2dy is the Dawson integral [3 ]. Function (2) reaches a minimum at 
0 

t = t m ~ 1.703/(26o) ,  

(2) 

(3) 

and at t --, ~o it tends to the limit 
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V l (0 ,  0) = [In (860) + C -  6 ] / 4 ,  (4) 

where C = 0.5772 ... is the Euler constant. The  specific electric resistance Pl and the temperature T 1 are connected 

by the relation 

P l = TI  + Q "  ( 5 )  

It the present study the solution of problem (1) is investigated for a wide class of functions describing the shape 

of the inhomogeneity.  In particular, the effect of this shape on formation of structures is studied. It is required that 

the following conditions be fulfilled: 

1. The  function Q (r, z) is continuously differentiable at least twice with respect to r and z at any point of 

the plane (r, z). 

2. At r = z = 0 the function Q(r, z) reaches the maximum, value Q(0, 0) = 1, and at r ;~ 0, z ~ 0 it decreases 

monotonically so that lim f~(r, z) = lira Q(r, z) = 0 
I'--> O0 Z - ~  O0 

lim 0Q lim 0Q Or - -~-z = 0 ,  O < f ~ ( r ,  z ) < l .  
r - ~ o O  Z - ~ o o  

3. For any z ~ ( -0% oo) the functions 

exist. 

0 r [ln r Q [  dr ,  ~o r [  In r dr ,  
Oz 

o o  

yr  
0 

a2f~ 
In  r - -  

Oz 2 
d r .  (6) 

4. At z ~ oo, ~2(r, z) = o(z-2) .  

In what follows, in order  not to digress from the main subject, consequences of the above conditions will 

be written. From 2 and 3 it follows that the following integrals are convergent: 

w (z) = xf2 ( x ,  z) d x ,  a O (z) = x ' d x ,  
0 0 Oz 0 Oz 2 ' 

In this case, both (6) and (7) converge uniformly in z. Because of this it is possible to pass to the limit in z under  

the integral sign in (6) and (7) and to integrate these expressions. From the convergence of (7) it follows that at 

t -  ---) o o  

if2 ( r ,  z) = o (r-2)  , 
0s 02Q 

- o ( r - 2 )  , - o ( r - 2 )  . ( 8 )  

Oz Oz 2 

Omitting the proof of these consequences, we point out that they can be derived from well-known theorems on 

integration of functions that depend on a parameter  (for example, [4, 5 ]). 

To find s teady-state  distributions Tl(r ,  z) ,  it will be assumed in (1) that OT1/Ot = 0. It is shown in 

Appendix 1 that at 6o >> 1 the solution of (1) that is bounded at any point of the plane (r, z) has the form 

= x l n x  ' d x - l n r  x ' dx  - 
T 1 ( r ,  z) ~ r 0z 2 r 0z 2 

_ Q ( r ,  z) 1 ~ exp(ikz) i k a ( k ) K  o ~ d k ,  (9) 
2 2Vr-~  -o~ 

and the temperature  distribution along the z axis is 
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02f2 (X, z) In V ~  0 - C dao (z) 
r 1 ( 0 ,  z) = ~ x In x dx  - 

o Oz z 2 dz 

f2 (0, z) + 1 ~ exp (ikz) ika (k) lnkdk, (10) 
2 Vr~ - - =  

where a(k) is the Fourier  t ransform of the function ao(z) from Eq. (3): 

1 
a (k) = ik J xf2 (x , k) dx  = ike) (k) , f ~ ( x ,  k ) -  J e x p ( - i k z )  f ~ ( x ,  z) d z .  

0 ~ --oo 
(11) 

The  tempera ture  distribution along the r axis is found from (9) at z = 0. With account for (11) it can be written as 

follows: 

1 
r 1 ( r ,  0) = ~- 

, oZf~(x, o) ] 02Q (x O) dx  _ ln r ~ x dx  - x l n x  2 
r Oz r Oz 2 

n (r, O) + 1 ~f gzo~ (k) K o ~ dk (12) 
2 " 

The est imation of the integrals in (10) and (12) carried out in Appendix 2 makes  it possible to determine 

the order  of magni tude  of the functions T 1 (0, z) and T 1 (r, 0) at large values of the cooordinates.  Let Q(0, z) = 

O ( z - Z - e ) ,  where e > 0. At 0 < e < 1, TI(0,  z) = O(z - 2 - e )  irrespective of a change in the function s z). 

Now let Q(r,  0) = O( r -2 -E) .  Also let 02f~/Oz 2 = O ( r - 2 - e ) ,  e > 0. Then,  if 0 < e < 3 / 2 ,  then T I (r, 0) = 

O(r -~) ,  that  is, the tempera ture  distribution over r is determined by the rate  of decrease of the function f2(r, 0). 

If  e _> 3 / 2  and  also if O2f2/Oz 2 = O(r  - 4 - e )  at any  e > 0, then T 1 (r, 0) = O(~ -3/2) = O(d03/4r -3"2) irrespective of the 

specification of the function f2(r, 0). Thus,  if at large distances from the center f~(r, 0) = O ( r - m ) ,  m >_ 7 /2 ,  and 

f2(O, z) = O ( z - n ) ,  n >- 3, then the change in the temperature  in the plane (r, z) is independent  of the initial shape 

of the inhomogenei ty.  A characteristic feature of the thermal  structures is that  at t -~ o~ the solution "forgets" the 

initial conditions, and  the form of the structure becomes universal. Therefore,  the exponents  rn = 3 / 2  and n = 3 

are critical parameters .  

For a qualitative description of the geometry of the thermal  structures, z = 0 is assumed in Eq. (10) and 

the tempera ture  at the center  is determined:  

1 I r~ (0, 0) = da o (o) I 
[ In 5 0 - 00/2  

d z  

where 

l n S - C  da o (0 )  [ 
0o = 1 2 dz I 

- ~f x l n x  d x -  -~ -o~ 
o dz 2 

At 6 o = 3 o cr = e x p ( 2 O o / I d a o ( O ) / d z l ) ,  T1 (0, 0) = 0. This value of the paramete r  do separates two regimes. At 

50 > do cr, Tl(r ,  0) > 0. Bearing in mind that  the function T 1 (r, 0) decreases more slowly at r >> 1 than T 1 (0, z) 

at z >> 1, it can be concluded that  in this regime a distinctive effect appears:  the inhomogenei ty intergrows across 

the current  lines. In this case the distribution of the temperature  and,  consequently, of specific resistance Pl  of (5) 

takes the form of a "ridge" that  extends along the r axis. It should be noted that  the larger 6o, the higher the 
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Fig. 1. Sketches of the specific resistance Pl = if2 and the temperature T 1 at 

30 = 0.1 (a), 20 (b), 40 (c), and 104 (d). 

temperature and the smaller the effect of the function f] (r, z) on the form of the "ridge"of the specific resistance. 

Therefore,  apart  from the thermal structure, an electric structure appears in the system. 

If 60 < 60 cr, the temperature at the center becomes negative: destruction of both the thermal and the 

electric structure is observed. The  form of the specific resistance becomes similar to that of the initial inhomogeneity 

f2 (r, z), and the temperature distribution takes the form of a "ravine" along the current lines ra ther  than the form 

of a "ridge" extended across the current lines. 

Figure 1 shows results of the numerical solution of problem (1) for a spherically symmetric inhomogeneity 

at different values of the parameter  60. As follows from (4), 60 cr = 28 for this inhomogeneity (In [1 ] 6 ocr was 

calculated with an error).  

Hitherto,  the distributions of temperature and specific resistance were considered in the s teady-state  regime 

(t --, co). The problem of estimating the time of development of the steady-state temperature regime (the time of 
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structure formation) arises. For simplicity, spherical symmetry of the inhomogeneity is assumed. The quantity 

defined by 

to = t m + (T10 - Tlm)/(OT1/Ot)max ' (13) 

is called the time of development of the steady-state temperature regime. In (13) trn and T10 = TI(0, 0) are 

prescribed by expressions (3), (4); Tlm is the value of function (2) at t = trn; (OT1/Ot)max is the maximum rate of 

change of function (2). This formula corresponds to the course of the change of temperature with time [1 ]. 

The derivative of (2) with respect to time is 

O T l l  1 [ 1 _ (1 + 2dot) F (2vr2-~00t-0t) 1 (14) 
Ot - 2 t(1 + 40 3/2 2vr~0 t " 

L J 

Let do >> 1. In (14) the change in t will be neglected compared to c3o(t), and from the condition d2T1/dt 2 = 0 the 

equation Xrn(1 + x 2) = (1 + xZm + 2x4)F(xm) is obtained, where xrn = ~ .  Hence tmax = X2m/(260) is found, 

and substi tuting it into (14), (dT1/dt)max = d0B = c30 "const is obtained. The temperature Tlm is found by 

substitution of (3) into (2): 

1 1 
Tlm 

2 g'-260t m (1 + 4tin) ~ 

x f dx 1 -  (1 + x  2) ~ A = c o n s t .  
0 

Then, with account for (4) to ~ 1.703/(260) + (ln 60 - A)/(Bd0). Thus, at 60 >> 1 the time of formation of the 

structures in the conductor is to ~ In do~do, i.e., it decreases as d 0 increases. 

Discussion and Conclusions. The present results show that in a metallic conductor under  the action of Joule 

heat sources an inhomogeneity intergrowing across the current lines can appear and thermal and electric structures 

will be formed in the vicinity of the inhomogeneity. The main parameter determining the conditions for formation 

of the structures is d 0. Its physical meaning is the ratio of the characteristic power of the Joule sources to the 

characteristcic rate of heat removal by heat conduction. The effect of intergrowth of the inhomogeneity can appear 

in the conductor when d o > d o cr, i.e., in electrophysical installations of high power. The numerical value of d 0 cr 

depends substantially on the shape of the inhomogeneity. This is already evident from a physical consideration of 

the extreme cases. Indeed, for manifestation of the intergrowth effect it is necessary that the heat release in the 

vicinity of the inhomogeneity at points lying on the r axis be substantially higher than that at other points of the 

medium. But the heat release is proportional to the square of the current density. Therefore, if the inhomogeneity 

is extended along the z axis in the initial state, the electric current lines flowing around the inhomogeneity are 

distorted slightly and a high power of the field sources is required in order that intergrowth of the inhomogeneity 

be induced. In the opposite case, when the inhomogeneity is extended along the z axis at the initial moment, in 

flowing around the inhomogeneity the electric current lines are distorted quite strongly. Consequently, in the latter 

case 6 o cr will be substantially smaller than in the former case. The value of c50 cr also depends substantially on the 

characteristic dimension of the inhomogeneity R. 

Finally, the formation of stable thermal and electric structures depends substantially on how distinctly the 

inhomogeneity is singled out against the background of the medium. If the inhomogeneity is such that far from the 

center the function describing its geometry decreases according to an exponential law with exponents larger than 

3/2 along the r axis and larger than 3 along the z axis, then universal structures are formed, the form of which is 

independent of the form the inhomogeneity. 

As follows from the aforesaid, the present results can be used both in scientific research (for example, in 
constructing models of thermal destruction of metals in strong electromagnetic fields) and in technology (for 

example, in developing new methods of nondestructive testing of metals). 
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A P P E N D I X  1 

The steady-state solution of system (1) at 6o >> 1 is found by the method described in [1, 2]; therefore, 
only the main points in the construction of function (9) that are characteristic of the present problem are given 

here. Assuming that O1(r, z) = Olo(r, z) + Qo(~, z) + O(6ffl), Tl(r, z) = T10(r, z) + II0(~, z) + O(601), where 
= r/V~O, substituting them into (1), and equating terms with the same powers of 6 o, after some transformations 

we obtain equations for determining O10(r, z), T10(r, z), Qo(~, z), rio(~, z): 

1 0 ( 0010] 1 0 ~ ( r ,  z) (A1) 
r Or ~r Or ] = - - 2  Oz ' 

0 0 1 0  Q (A2) 
TIO = Oz 2 ' 

1 o ( OQo) l o %  rio OQo 
O~ O~ ~ 2 0 z  4 ' Oz 

The solution of Eq. (A1) is 0~o = - 1 /2 f  dx / x  7 Y" (Of~(y, z)/Oz)dy or after integration by parts 
r x 

O10(r ,  z ) = ~  ln r  f x Oz dx - x ln x Oz dx . 
g r 

(A3) 

(A4) 

Then, from Eq. (A2) 

= -  x l n x  ' dx - ln  r x ' d x  - - -  

2 r Oz 2 r Oz 2 2 

Equations (A3) are independent of f~(r, z), and therefore, the form of the functions Qo(~, z) and Ho(~, z) coincides 

with that obtained in [1, 2]: 

/ k 2 ) 
Qo(~,  z ) -  1 exp(ikz) q ( k ) K  0 - ~  dk H 0(~ z ) = -  OQO (A6) 

v r ~  -oo ' ' Oz ' 

where Ko(x) is the modified Bessel function of the second kind. The unknown function q(k) is determined from 

the obvious condition of finiteness of the solution of problem (1) at any r and z. In this connection it should be 

noted that from the boundness of [K0(x) + In (x/2) I < M it follows that 

oo 

f exp (ikz) ka (k) [K 0 (k2~/V~) + In ( k 2 ~ / V r - 8 )  ] d k  < M J [ka (k) dk,  
0 0 

where a(k) is function (11). But from the absolute integrability of the functions a0(z) and dao/dz, convergence of 

~ l ka(k) I dk follows. Therefore 
0 

= exp (ikz) (k) o + In ak 
- - o o  

+m 

is a continuous function of ~ and l i% ~o(~) = -Cfooka(k)exp(ikz)dk = -Cdao(z)/dz, where C is the Euler constant, 
- r and the value of the limit follows from a power series expansion of the function KO(X). Consequently, in orde to 

eliminate singularities in solutions (A4)-  (A6) arising at r ~ 0, it must be assumed that q(k) = a(k)/2. Then, the 
distributions of the potential 00(0, z) and the temperature T 1(0, z) of (10) along the z axis will be finite, and 

therefore, the functions O1 (r, z) and T1 (r, z) of (9) will be bounded at any r and z. 
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A P P E N D I X  2 

For simplicity the function f2(r, z) is assumed to be even in both r and in z. Then, 

• exp (ikz) ika (k) In kdk = - 2 Re ~ exp (ikz) kZw (k) In kdk. 
- -  r 0 

(A7) 

Asymptotic expressions for such integrals at z ~ oo are found in [6 ]. As applied to Eq. (A7), this gives 

exp(ikz) i k a ( k ) l n k d k - -  ~ ~ xdx ~ Q (x y) dy + o (z -a) (A8) 
- oo z 0 0 

From condition 4 imposed on the function Q(r, z) and from (7) it follows that f~(0, z ) =  o(z-2), 

02Q/0z 2 = o(z-4), dao(z)/dz -- o(z-4), .~ x In xO2Q(x, z)/Oz2dx = o(z-4). To find the asymptotic expression for 
0 

the integral f k2~o(k)Ko((k2/vq)~)dk at r --, ~, the function co(k) is expanded in a Taylor series. Then 
0 

/ : l 21 0 k2~ ( k ) K  0 , ~  dk m=0~ ~ (O) /m!  ~0 km+2Ko - ~  ~ dk = 

(23'4 ~a,2) + o (~-a/2), 

where F(x) is the gamma-function. From Eq. (8), f2(r, 0) = O(r-2-e) ,  e > 0. If 02Q/Oz 2 = O(r-4-e), 

o 2 
I (r) = x ln--X Q (x, 0) dx - In (x/r)a+e d x -  12 2+el , 

r r Oz 2 r X e r 
r . - ~  o o .  

At 02Q/ Oz 2 = O(r- 2-e), Z (r) - 1/(e2re). 

N O T A T I O N  

Dimensionless quantities: r, z, cylindrical coordinates; t, time; a, electric conductivity; p, specific resistance; 
T1, temperature; Q, function describing the geometry of the inhomogeneity; ~ ,  electric potential; 60, parameter of 

the system. Dimensional quantities: a, temperature coefficient of resistance; Z, thermal diffusivity; 7, density of 

the material; c, heat capacity; R, characteristic dimension of the inhomogeneity; Ta, ambient temperature; To, 
initial temperature. 
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